酶的固定化技术最新研究进展
发布时间:2018-05-22 09:54

酶的固定化技术最新研究进展

酶的固定化技术是指将天然的游离酶限定在一定空间内或完全附着在某固态结构上而不能自由移动的一种生物技术,是一种常用、有效、便捷的生物酶修饰手段,对酶的催化活性和操作稳定性具有极大的改善和提升。图 1直观地展示了相比于游离酶而言,固定化酶在催化反应中所具有的优势

最早被发现的固定化形式是天然存在的生物膜系统,它们存在于河流中的石块、人类的牙齿、水管等天然环境中[2]。20世纪70年代以来,人类对生物膜的认识逐渐加深并将其利用于生产生活和社会改造中,固定化技术便由此诞生并逐步发展起来[3]。固定化技术对生物酶的改造效果受多方面因素的影响,如固定化载体、反应介质、制备条件、酶分子性质及有机溶剂等;对于不同的固定化对象,目前没有普适性的策略,需要根据酶的特性以及应用需求来选择合适的固定化方法[4]。近10年来,本团队对酶的固定化技术进行了大量研究[5-7],发现多数传统固定化技术所使用的方法策略均较为成熟且相似,在酶的催化特性改善上取得了一些成果,但其发展仍受到普适性低、工业成本高等因素的限制。随着现代生物技术的不断发展以及学科间的相互渗透,酶的固定化技术研究取得了一定的突破,新型固定化技术的探索研究已成为领域内的热点与难点,涌现了多种新型固定化载体与技术[8]。
 
1 传统固定化技术概况
经过几十年的发展,传统的固定化技术主要分为吸附、共价结合、包埋和交联四大类。
 
吸附法是最简单的固定化方式,它利用酶与载体间的弱作用力,如范德华力、疏水作用力和表面张力等,因而极易发生酶的脱吸附。大孔树脂、多孔硅玻璃、分子筛等材料是传统固定化技术的优良载体,也是第一代工业用固定化酶研发的热点材料。吸附法制备固定化酶的优点在于操作简单、酶活回收率高、载体易回收、成本低、见效快、不需要化学修饰,但同时也伴随固定化酶不稳定、酶蛋白易流失、载体会对产物造成一定吸附等缺点[9]。
 
共价结合法是通过共价键将酶表面的氨基酸残基与载体表面活性基团连接而形成的一种稳定的固定化策略。这种方法通常要求载体上包含有较多的化学基团或具有较强的可修饰性,以便与酶分子产生化学键偶联,常见的化学键有异脲键、重氮键、环氧基、烷基、羧基等。多步法固定化是一种加强共价结合稳定性的固定化技术,Mateo等[10]提出了一种“订制”功能性环氧树脂固定化酶的方法,主要分为两步,首先是对酶分子和固定化载体进行物理或化学的预处理,使其带上后续反应所需的官能团;然后利用酶分子表面的亲核官能团与载体上的环氧基团发生强烈的多重共价反应,从而实现酶的共价固定。共价结合法制备固定化酶具有较强的稳定性,与吸附法相比几乎没有酶分子泄漏,通常能在一定程度上提高其热稳定性,但在共价反应的过程中,酶分子易发生构象改变,导致活性降低。
 
包埋法是指利用具有格子结构的凝胶材料或具有多功能的半透膜,使酶分子被固定于特定的结构之中,如卡拉胶、聚乙烯亚胺、聚丙烯酰胺等聚离子聚合物材料[11]。这种固定化方法具有固定化率高、可用于多种目的分子的共固定等优点;但其主要缺陷在于,若催化反应发生较快,反应产物的积累难以很快地透过胶膜释放到反应溶剂中,从而降低反应速率甚至导致胶膜材料的破裂。
 
交联法是一种无载体固定化策略,它利用双功能或多功能的交联剂(如戊二醛、二羧酸、己二酰亚胺酸二甲酯等)使酶分子之间发生化学连接,形成一种大型的复杂三维结构,且获得疏水性而可从溶液中分离出来,从而得到固定化酶。由于交联反应的无序性,可能在酶的活性中心发生交联而使酶活降低或失活,大大降低固定化酶的酶活回收率。同时,由简单交联形成的固定化酶交联体的机械性能较差,因此交联法很少被单独应用于酶的固定化,通常与其他固定化方法结合,以巩固或提高原有固定化策略的效果。Jancsik等[12]采用先包埋后交联的方法,分别将β-半乳糖苷酶、青霉素酰化酶和醛缩酶包埋于聚乙烯醇膜内,然后用戊二醛对三种酶进行交联,在减少包埋蛋白损失的同时提高交联酶的机械性能。
 
2 新型固定化酶技术
在新型固定化技术的探索研究中,固定化载体的选择与研发十分重要,其一般具有优异物化特性,例如多孔性、疏水/亲水性、物化稳定、表面活性等。合适的固定化载体能有效提高固定化率和催化效率,因而许多新型固定化技术的研究都围绕着载体材料展开。另一方面,为了让新型载体的优势得到最大发挥,同时弥补其存在的缺陷,研究者们对固定化技术的方法策略也进行了大量的创新研究[13-15]。
 
2.1 基于新型固定化载体的固定化酶技术
2.1.1 基于材料创新的固定化技术
随着生物技术与材料、化学等学科的不断交叉发展,新的载体修饰方法和新型材料不断涌现,丰富了固定化技术研究的载体来源,涌现一批围绕新型载体展开的固定化策略研究[16-18]。这一类载体通常有表面积大、具有多孔性空间结构、底物/产物亲和性等特征,可主要分为新型纳米材料载体、磁性材料载体、传统材料经改造修饰而成的复合新型载体3大类。
 
新型纳米载体是指具有纳米级结构的材料,这类材料拥有极大的表面积和良好的分散性,能极大地提高固定化率和反应催化效率,主要包含有多孔纳米金颗粒[19]、纳米管[20]、石墨烯[21]等。使用纳米材料载体制备的固定化酶多应用于电极和生物传感器领域,研究结果显示这类生物传感器能产生更强的信号,拥有更大的检测范围和更高的敏感度。其中,碳纳米管是最具代表性的新型纳米材料之一,1991年被日本学者发现以来,极大地推动了材料制备领域的发展,2010年以来碳纳米管在固定化酶技术中的应用不断涌现,目前在脂肪酶、水解酶、漆酶和多种氧化还原酶的固定化研究中均有大量应用。本团队利用多壁碳纳米管吸附固定化洋葱伯克霍尔德菌脂肪酶[22],并将其应用于手性拆分1-苯乙醇反应,发现该固定化酶的催化效率得到了极大的提升,是游离酶的54倍,拆分反应平衡所需的时间从几天缩短至10 min,表明纳米材料制备的固定化酶在生物催化应用中具有极大的发展潜力。
 
磁性材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料,其最大优点在于可通过磁力吸引而迅速分离固定化酶,且固定化方法简单,能有效减少资本和工程投入[23]。单一的磁性颗粒一般不直接用于酶的固定化,通常与其他有机高分子聚合物或多孔性无机材料联合使用,以获得较高的固定化率,同时使固定化酶具有磁性,便于分离回收。在我国固定化酶研究领域内,磁性颗粒早在20世纪80年代就被应用于固定化酶的研究工作中,21世纪以来得到了大量应用,至今仍是固定化酶制备的常用材料之一,如Hou、Song、Fortes等的工作[24-26],利用磁性颗粒结合其他固定化材料制备固定化酶,大大简化了回收利用操作过程。本团队利用树状分子修饰的磁化多壁碳纳米管作为载体固定化米赫根毛霉脂肪酶(Rhizomucor miehei lipase),获得了催化活性高、结构稳定、操作简便的固定化酶,并将其成功应用于生物柴油的制备反应[27]。
 
基于传统材料进一步改造修饰的固定化载体通常有较为繁杂的化学修饰,但这种方法具有较强的目的性和方向性,常应用于定向固定化和共固定复合酶的研究中[28-29]。一些性能优良的传统载体,如多孔硅材料、大孔树脂、分子筛、天然多糖等,经过长期的实验研究已被证明具有较大的固定化潜力,但仍具有部分缺陷,如稳定性差、不易回收利用等,通过针对性的改造与修饰克服其应用阻碍,制备出新型的二代载体以促进固定化酶走向工业化应用,是当前固定化领域内的研究热点之一。以琼脂糖材料为例,早在1975年便有研究使用琼脂糖珠固定化胰蛋白酶[30],而在Rueda等[31]2016年的工作当中,利用辛基谷氨酸对琼脂糖珠进行修饰并固定化了5种不同的脂肪酶,不仅大幅提高了脂肪酶催化活力,还能利用离子交换将固定化酶洗脱而回收利用载体,提出了一种可逆固定化技术。
 
由以上3类基于材料创新组成的固定化酶技术具有催化效果好、固定化率高等特点,其主要优势在于对新兴载体的应用,使该技术具有极大的发展潜力与可塑性。另一方面,由于载体的选择和预处理等过程是必要的,该技术的操作过程一般比较复杂,固定化酶的物理形态和适用环境受载体材料的影响极大。
 
2.1.2 金属有机骨架化合物介导的固定化
金属有机骨架(MOF)也称多孔配位聚合物(PCPs),是一类有多孔结构杂化晶体,由无机分子和有机络合基团(羧酸盐、偶氮、膦酸盐等)连接构成[32]。MOF含有大量孔隙结构,在气体储存、催化、检测、生物医学等众多领域中均有较大应用潜力。2006年,Psklak最早将MOF应用于固定化酶技术,直至2011年,Ma等的工作发表,该固定化技术开始得到广泛的应用。MOF或PCPs固定化酶技术可分为3类,即物理吸附、化学连接和牢笼包埋[33];其中牢笼包埋法固定化酶利用载体的牢笼结构,通过简单混合孵育即可使酶分子束缚于其牢笼结构内,并发生一定的结构变化,此时酶的结构与游离状态下不同,但也并未损伤活性。Lykourinou等[34]合成了多孔MOF (Tb-TATB,铽-三氨基三硝基苯,如图 2)并固定化微过氧化物酶-11 (MP-11),将其氧化3, 5-二叔丁基儿茶酚(DTBC)的底物转化率提高至48.7%,而之前大孔树脂固定化的MP-11转化率只有17.0%。
.
 
3 固定化酶的应用
生物酶制剂具有催化效率高、反应类型多样、绿色、环境友好等优良特性,已经被广泛应用于许多实际工业生产中。固定化酶最早被应用于食品行业,最典型的应用是固定化乳糖酶在乳制品生产中的应用,鲜奶中一般都有较高含量的乳糖,一些乳糖不耐症患者在摄入后可发生胃痉挛、腹泻等症状,且乳糖在低温环境中易结晶,影响一些低温乳制品的口感和风味,在乳制品的生产过程中,利用固定化的乳糖酶对乳制品进行充分处理,能有效解决上述问题。除此之外,固定化酶在生物传感器、医疗诊断、药物制备、环境治理和生物能源等领域也有着大量的应用[75-76]。生物传感器由于其简单、快速、灵敏、专一且成本较低的特点,使其成为了目前传感器研发领域的热点[77]。新型固定化技术进一步提高了生物酶制剂的催化活力和操作稳定性,简化了回收过程,能大大减少酶制剂的生产成本,对生物酶的实际工业应用具有重大意义。
 
在生物能源应用中,大量研究报道了固定化酶在生物柴油制备中的应用,而反应体系以油相为主,粘度较大,使得固定化酶易发生蛋白脱落,并且酶与底物分离困难而重复利用性差。相比于用天然沸石、壳聚糖等为载体的传统固定化方法,范艳利等[27]利用磁化的树状分子定向固定化了米赫根毛霉脂肪酶,该固定化酶结合稳定,且具有磁性,可利用磁场作用力实现固定化酶与反应体系的快速分离,操作简单且反应稳定,能有效解决传统固定化技术的应用障碍。
 
酶促手性拆分药物中间体是酶制剂在药物制备领域内的重要应用之一。Hara等[78]利用凝胶交联法制备了固定化洋葱伯克霍德菌脂肪酶(BCL),其催化1-苯乙醇到达反应平衡所需时间在24 h以上,而本团队利用新型固定化载体碳纳米管吸附固定化BCL,其催化拆分1-苯乙醇平衡反应时间只需要10 min[22],表明新型固定化材料对酶催化效率的提高具有极大探索价值和应用潜力。
 
在环境治理应用上,漆酶在废水处理和有毒化合物降解中有着广泛的应用。20世纪80年代以来,漆酶的降解能力被逐步研究和发现,其早期固定化研究主要集中于海藻酸钠包埋、壳聚糖吸附、凝胶杂化等方法,其操作稳定性和重复利用性均较低。庞仕龙[79]合成了两种带有羧酸基团的金属有机骨架介孔材料Cu-MOF和Zr-MOF,并用其吸附固定化漆酶,所得固定化酶的重复性好,且在水相中储存3周后,酶活回收率仍能保持在55%以上,表明其具有良好的操作稳定性,体现了新型固定化技术的发展优势。
 
4 总结与展望
近年来,固定化技术的创新研究已经受到了众多领域内研究人员的关注,大量的探索研究不断涌现,取得了一定的进步与创新。但固定化技术仍存在一个关键性的问题,即缺乏普适性,对于不同的酶、不同的载体、不同的反应,其最佳固定化方法都不尽相同。另一方面,研究人员对固定化技术影响酶催化效率的深层机理仍缺乏足够的理解,在固定化技术的研究中,缺乏细节性设计。结合本团队十余年对固定化技术研究的理解,对其未来的发展主要提出以下3点建议:
 
1) 建立一个包含固定化酶、载体和方法的数据库;使研究人员在针对某种酶分子设计固定化方法时能够有充分、可靠、便捷的技术平台支持。
 
2) 增强技术创新与生物信息学、材料学和化学等相关学科的交叉合作;利用生物信息模拟和预测技术结合现代物理化学的表征手段,对固定化影响酶分子的机理进行深入探究,以期加强固定化技术的设计性和可预测性。
 
3) 学术型科研团队应与相关企业或工厂研发团队合作;使在实验室阶段取得成功的固定化技术能够及时受到实际应用的检验,通过企业或工厂研发团队进行中等规模、大规模制备与应用的尝试和优化,加快固定化酶在实际生产生活中的应用。同时,能及时对固定化技术的研究方向与重点给出有效的反馈与建议。
 
随着现代生物技术和材料、化工等相关学科的不断发展,酶的固定化技术的发展正逐步由粗放转向精细,由定性转向定量,由无序转向定向,在未来的固定化技术研究中,研究策略的目的性、设计性以及预测性将是新兴技术的特点与亮点所在,而高品质固定化酶的获取与有效应用仍是该领域内研究人员追求的最终目标。